Copied to
clipboard

G = C22×C52C8order 160 = 25·5

Direct product of C22 and C52C8

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C22×C52C8, C20.40C23, C23.4Dic5, (C2×C10)⋊5C8, C104(C2×C8), C54(C22×C8), C20.63(C2×C4), (C2×C20).23C4, (C2×C4).99D10, (C2×C4).9Dic5, (C22×C4).9D5, C4.14(C2×Dic5), C4.40(C22×D5), (C22×C10).10C4, (C22×C20).12C2, C10.33(C22×C4), C2.1(C22×Dic5), (C2×C20).112C22, C22.11(C2×Dic5), (C2×C10).51(C2×C4), SmallGroup(160,141)

Series: Derived Chief Lower central Upper central

C1C5 — C22×C52C8
C1C5C10C20C52C8C2×C52C8 — C22×C52C8
C5 — C22×C52C8
C1C22×C4

Generators and relations for C22×C52C8
 G = < a,b,c,d | a2=b2=c5=d8=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 120 in 76 conjugacy classes, 65 normal (11 characteristic)
C1, C2, C2, C4, C4, C22, C5, C8, C2×C4, C23, C10, C10, C2×C8, C22×C4, C20, C20, C2×C10, C22×C8, C52C8, C2×C20, C22×C10, C2×C52C8, C22×C20, C22×C52C8
Quotients: C1, C2, C4, C22, C8, C2×C4, C23, D5, C2×C8, C22×C4, Dic5, D10, C22×C8, C52C8, C2×Dic5, C22×D5, C2×C52C8, C22×Dic5, C22×C52C8

Smallest permutation representation of C22×C52C8
Regular action on 160 points
Generators in S160
(1 29)(2 30)(3 31)(4 32)(5 25)(6 26)(7 27)(8 28)(9 106)(10 107)(11 108)(12 109)(13 110)(14 111)(15 112)(16 105)(17 102)(18 103)(19 104)(20 97)(21 98)(22 99)(23 100)(24 101)(33 76)(34 77)(35 78)(36 79)(37 80)(38 73)(39 74)(40 75)(41 142)(42 143)(43 144)(44 137)(45 138)(46 139)(47 140)(48 141)(49 150)(50 151)(51 152)(52 145)(53 146)(54 147)(55 148)(56 149)(57 158)(58 159)(59 160)(60 153)(61 154)(62 155)(63 156)(64 157)(65 113)(66 114)(67 115)(68 116)(69 117)(70 118)(71 119)(72 120)(81 126)(82 127)(83 128)(84 121)(85 122)(86 123)(87 124)(88 125)(89 134)(90 135)(91 136)(92 129)(93 130)(94 131)(95 132)(96 133)
(1 144)(2 137)(3 138)(4 139)(5 140)(6 141)(7 142)(8 143)(9 80)(10 73)(11 74)(12 75)(13 76)(14 77)(15 78)(16 79)(17 69)(18 70)(19 71)(20 72)(21 65)(22 66)(23 67)(24 68)(25 47)(26 48)(27 41)(28 42)(29 43)(30 44)(31 45)(32 46)(33 110)(34 111)(35 112)(36 105)(37 106)(38 107)(39 108)(40 109)(49 122)(50 123)(51 124)(52 125)(53 126)(54 127)(55 128)(56 121)(57 130)(58 131)(59 132)(60 133)(61 134)(62 135)(63 136)(64 129)(81 146)(82 147)(83 148)(84 149)(85 150)(86 151)(87 152)(88 145)(89 154)(90 155)(91 156)(92 157)(93 158)(94 159)(95 160)(96 153)(97 120)(98 113)(99 114)(100 115)(101 116)(102 117)(103 118)(104 119)
(1 11 65 147 155)(2 156 148 66 12)(3 13 67 149 157)(4 158 150 68 14)(5 15 69 151 159)(6 160 152 70 16)(7 9 71 145 153)(8 154 146 72 10)(17 86 94 140 78)(18 79 141 95 87)(19 88 96 142 80)(20 73 143 89 81)(21 82 90 144 74)(22 75 137 91 83)(23 84 92 138 76)(24 77 139 93 85)(25 112 117 50 58)(26 59 51 118 105)(27 106 119 52 60)(28 61 53 120 107)(29 108 113 54 62)(30 63 55 114 109)(31 110 115 56 64)(32 57 49 116 111)(33 100 121 129 45)(34 46 130 122 101)(35 102 123 131 47)(36 48 132 124 103)(37 104 125 133 41)(38 42 134 126 97)(39 98 127 135 43)(40 44 136 128 99)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,106)(10,107)(11,108)(12,109)(13,110)(14,111)(15,112)(16,105)(17,102)(18,103)(19,104)(20,97)(21,98)(22,99)(23,100)(24,101)(33,76)(34,77)(35,78)(36,79)(37,80)(38,73)(39,74)(40,75)(41,142)(42,143)(43,144)(44,137)(45,138)(46,139)(47,140)(48,141)(49,150)(50,151)(51,152)(52,145)(53,146)(54,147)(55,148)(56,149)(57,158)(58,159)(59,160)(60,153)(61,154)(62,155)(63,156)(64,157)(65,113)(66,114)(67,115)(68,116)(69,117)(70,118)(71,119)(72,120)(81,126)(82,127)(83,128)(84,121)(85,122)(86,123)(87,124)(88,125)(89,134)(90,135)(91,136)(92,129)(93,130)(94,131)(95,132)(96,133), (1,144)(2,137)(3,138)(4,139)(5,140)(6,141)(7,142)(8,143)(9,80)(10,73)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,69)(18,70)(19,71)(20,72)(21,65)(22,66)(23,67)(24,68)(25,47)(26,48)(27,41)(28,42)(29,43)(30,44)(31,45)(32,46)(33,110)(34,111)(35,112)(36,105)(37,106)(38,107)(39,108)(40,109)(49,122)(50,123)(51,124)(52,125)(53,126)(54,127)(55,128)(56,121)(57,130)(58,131)(59,132)(60,133)(61,134)(62,135)(63,136)(64,129)(81,146)(82,147)(83,148)(84,149)(85,150)(86,151)(87,152)(88,145)(89,154)(90,155)(91,156)(92,157)(93,158)(94,159)(95,160)(96,153)(97,120)(98,113)(99,114)(100,115)(101,116)(102,117)(103,118)(104,119), (1,11,65,147,155)(2,156,148,66,12)(3,13,67,149,157)(4,158,150,68,14)(5,15,69,151,159)(6,160,152,70,16)(7,9,71,145,153)(8,154,146,72,10)(17,86,94,140,78)(18,79,141,95,87)(19,88,96,142,80)(20,73,143,89,81)(21,82,90,144,74)(22,75,137,91,83)(23,84,92,138,76)(24,77,139,93,85)(25,112,117,50,58)(26,59,51,118,105)(27,106,119,52,60)(28,61,53,120,107)(29,108,113,54,62)(30,63,55,114,109)(31,110,115,56,64)(32,57,49,116,111)(33,100,121,129,45)(34,46,130,122,101)(35,102,123,131,47)(36,48,132,124,103)(37,104,125,133,41)(38,42,134,126,97)(39,98,127,135,43)(40,44,136,128,99), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;

G:=Group( (1,29)(2,30)(3,31)(4,32)(5,25)(6,26)(7,27)(8,28)(9,106)(10,107)(11,108)(12,109)(13,110)(14,111)(15,112)(16,105)(17,102)(18,103)(19,104)(20,97)(21,98)(22,99)(23,100)(24,101)(33,76)(34,77)(35,78)(36,79)(37,80)(38,73)(39,74)(40,75)(41,142)(42,143)(43,144)(44,137)(45,138)(46,139)(47,140)(48,141)(49,150)(50,151)(51,152)(52,145)(53,146)(54,147)(55,148)(56,149)(57,158)(58,159)(59,160)(60,153)(61,154)(62,155)(63,156)(64,157)(65,113)(66,114)(67,115)(68,116)(69,117)(70,118)(71,119)(72,120)(81,126)(82,127)(83,128)(84,121)(85,122)(86,123)(87,124)(88,125)(89,134)(90,135)(91,136)(92,129)(93,130)(94,131)(95,132)(96,133), (1,144)(2,137)(3,138)(4,139)(5,140)(6,141)(7,142)(8,143)(9,80)(10,73)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,69)(18,70)(19,71)(20,72)(21,65)(22,66)(23,67)(24,68)(25,47)(26,48)(27,41)(28,42)(29,43)(30,44)(31,45)(32,46)(33,110)(34,111)(35,112)(36,105)(37,106)(38,107)(39,108)(40,109)(49,122)(50,123)(51,124)(52,125)(53,126)(54,127)(55,128)(56,121)(57,130)(58,131)(59,132)(60,133)(61,134)(62,135)(63,136)(64,129)(81,146)(82,147)(83,148)(84,149)(85,150)(86,151)(87,152)(88,145)(89,154)(90,155)(91,156)(92,157)(93,158)(94,159)(95,160)(96,153)(97,120)(98,113)(99,114)(100,115)(101,116)(102,117)(103,118)(104,119), (1,11,65,147,155)(2,156,148,66,12)(3,13,67,149,157)(4,158,150,68,14)(5,15,69,151,159)(6,160,152,70,16)(7,9,71,145,153)(8,154,146,72,10)(17,86,94,140,78)(18,79,141,95,87)(19,88,96,142,80)(20,73,143,89,81)(21,82,90,144,74)(22,75,137,91,83)(23,84,92,138,76)(24,77,139,93,85)(25,112,117,50,58)(26,59,51,118,105)(27,106,119,52,60)(28,61,53,120,107)(29,108,113,54,62)(30,63,55,114,109)(31,110,115,56,64)(32,57,49,116,111)(33,100,121,129,45)(34,46,130,122,101)(35,102,123,131,47)(36,48,132,124,103)(37,104,125,133,41)(38,42,134,126,97)(39,98,127,135,43)(40,44,136,128,99), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );

G=PermutationGroup([[(1,29),(2,30),(3,31),(4,32),(5,25),(6,26),(7,27),(8,28),(9,106),(10,107),(11,108),(12,109),(13,110),(14,111),(15,112),(16,105),(17,102),(18,103),(19,104),(20,97),(21,98),(22,99),(23,100),(24,101),(33,76),(34,77),(35,78),(36,79),(37,80),(38,73),(39,74),(40,75),(41,142),(42,143),(43,144),(44,137),(45,138),(46,139),(47,140),(48,141),(49,150),(50,151),(51,152),(52,145),(53,146),(54,147),(55,148),(56,149),(57,158),(58,159),(59,160),(60,153),(61,154),(62,155),(63,156),(64,157),(65,113),(66,114),(67,115),(68,116),(69,117),(70,118),(71,119),(72,120),(81,126),(82,127),(83,128),(84,121),(85,122),(86,123),(87,124),(88,125),(89,134),(90,135),(91,136),(92,129),(93,130),(94,131),(95,132),(96,133)], [(1,144),(2,137),(3,138),(4,139),(5,140),(6,141),(7,142),(8,143),(9,80),(10,73),(11,74),(12,75),(13,76),(14,77),(15,78),(16,79),(17,69),(18,70),(19,71),(20,72),(21,65),(22,66),(23,67),(24,68),(25,47),(26,48),(27,41),(28,42),(29,43),(30,44),(31,45),(32,46),(33,110),(34,111),(35,112),(36,105),(37,106),(38,107),(39,108),(40,109),(49,122),(50,123),(51,124),(52,125),(53,126),(54,127),(55,128),(56,121),(57,130),(58,131),(59,132),(60,133),(61,134),(62,135),(63,136),(64,129),(81,146),(82,147),(83,148),(84,149),(85,150),(86,151),(87,152),(88,145),(89,154),(90,155),(91,156),(92,157),(93,158),(94,159),(95,160),(96,153),(97,120),(98,113),(99,114),(100,115),(101,116),(102,117),(103,118),(104,119)], [(1,11,65,147,155),(2,156,148,66,12),(3,13,67,149,157),(4,158,150,68,14),(5,15,69,151,159),(6,160,152,70,16),(7,9,71,145,153),(8,154,146,72,10),(17,86,94,140,78),(18,79,141,95,87),(19,88,96,142,80),(20,73,143,89,81),(21,82,90,144,74),(22,75,137,91,83),(23,84,92,138,76),(24,77,139,93,85),(25,112,117,50,58),(26,59,51,118,105),(27,106,119,52,60),(28,61,53,120,107),(29,108,113,54,62),(30,63,55,114,109),(31,110,115,56,64),(32,57,49,116,111),(33,100,121,129,45),(34,46,130,122,101),(35,102,123,131,47),(36,48,132,124,103),(37,104,125,133,41),(38,42,134,126,97),(39,98,127,135,43),(40,44,136,128,99)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)]])

C22×C52C8 is a maximal subgroup of
(C2×C20)⋊8C8  C20.31C42  (C2×C40)⋊15C4  C20.34C42  C10.6M5(2)  C55(C8×D4)  C52C826D4  C20.35C42  C20.76(C4⋊C4)  C42.43D10  C4○D2010C4  C42.47D10  (C2×C10)⋊D8  C52C823D4  C52C824D4  (C2×C10)⋊Q16  C2×C8×Dic5  C20.51(C4⋊C4)  C20.37C42  C4.89(C2×D20)  C20.(C2×D4)  (D4×C10).24C4  D5×C22×C8
C22×C52C8 is a maximal quotient of
C42.6Dic5  C40.70C23

64 conjugacy classes

class 1 2A···2G4A···4H5A5B8A···8P10A···10N20A···20P
order12···24···4558···810···1020···20
size11···11···1225···52···22···2

64 irreducible representations

dim11111122222
type++++-+-
imageC1C2C2C4C4C8D5Dic5D10Dic5C52C8
kernelC22×C52C8C2×C52C8C22×C20C2×C20C22×C10C2×C10C22×C4C2×C4C2×C4C23C22
# reps1616216266216

Matrix representation of C22×C52C8 in GL4(𝔽41) generated by

40000
04000
0010
0001
,
1000
0100
00400
00040
,
1000
0100
003540
003640
,
27000
0100
00336
00108
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,0,1,0,0,0,0,35,36,0,0,40,40],[27,0,0,0,0,1,0,0,0,0,33,10,0,0,6,8] >;

C22×C52C8 in GAP, Magma, Sage, TeX

C_2^2\times C_5\rtimes_2C_8
% in TeX

G:=Group("C2^2xC5:2C8");
// GroupNames label

G:=SmallGroup(160,141);
// by ID

G=gap.SmallGroup(160,141);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,48,69,4613]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^5=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽